Shimmy Download

Tiny Rust OpenAI-compatible server for local GGUF/SafeTensors models with hot swaps, auto-discovery, and multi-backend GPU/MOE support for drop-in use across editors and SDKs.

⭐ 3,449 stars on GitHub
Latest Release: v1.8.1

About Software

Shimmy is a 5MB Rust inference server that mirrors OpenAI APIs for local GGUF/SafeTensors models. It auto-discovers models from Hugging Face, Ollama, or local dirs, hot-swaps them, and allocates ports automatically.

It supports CUDA, Vulkan, OpenCL, MLX, and MOE hybrid offloading to fit larger models on constrained GPUs. Editors and SDKs work by just repointing the base URL, with no API keys required for local use.

Use Cases:

  • Run OpenAI-compatible APIs locally with a tiny Rust single binary
  • Serve GGUF/SafeTensors models with hot swaps and auto-discovery
  • Expose drop-in endpoints for SDKs, VSCode, Cursor, and Continue.dev
  • Leverage GPU/Vulkan/OpenCL/MLX or MOE hybrid offload on limited VRAM
  • Zero-config startup with auto ports and LoRA detection for local inference

Downloads

v1.8.1 December 08, 2025
shimmy-windows-x86_64.exeexe
Download
shimmy.exeexe
Download
v1.8.0 December 08, 2025
shimmy-windows-x86_64.exeexe
Download
shimmy.exeexe
Download
v1.7.4 October 23, 2025
shimmy-windows-x86_64.exeexe
Download
shimmy.exeexe
Download
v1.7.3 October 12, 2025
shimmy-windows-x86_64.exeexe
Download
shimmy.exeexe
Download
v1.7.2-test6 October 10, 2025
shimmy-windows-x86_64.exeexe
Download
shimmy.exeexe
Download
v1.7.2 October 10, 2025
shimmy-windows-x86_64.exeexe
Download
shimmy.exeexe
Download
v1.7.0 October 08, 2025
shimmy-windows-x86_64.exeexe
Download
shimmy.exeexe
Download
v1.6.0 October 03, 2025
shimmy-windows-x86_64.exeexe
Download
shimmy.exeexe
Download
v1.5.6 September 23, 2025
shimmy.exeexe
Download
v1.5.1 September 19, 2025
shimmy-windows-x86_64.exeexe
Download
shimmy.exeexe
Download
v1.5.0 September 19, 2025
shimmy-windows-x86_64.exeexe
Download
shimmy.exeexe
Download
v1.4.1 September 17, 2025
shimmy-windows-x86_64.exeexe
Download
shimmy.exeexe
Download
v1.4.0 September 17, 2025
shimmy.exeexe
Download
v1.3.3 September 14, 2025
shimmy-windows-x86_64.exeexe
Download
shimmy.exeexe
Download
v1.3.1 September 12, 2025
shimmy-windows-x86_64-v1.3.1.exeexe
Download
v1.2.0 September 10, 2025
shimmy-windows-x86_64.exeexe
Download
shimmy.exeexe
Download
v1.0.0 September 08, 2025
shimmy-windows-x86_64.exeexe
Download
shimmy.exeexe
Download
v0.1.1 September 06, 2025
shimmy.exeexe
Download
v0.1.0 September 04, 2025
shimmy-windows-amd64.exeexe
Download
shimmy.exeexe
Download

Package Info

Last Updated
Dec 08, 2025
Latest Version
v1.8.1
License
MIT
Total Versions
19

README

The Lightweight OpenAI API Server

🔒 Local Inference Without Dependencies 🚀

License: MIT (https://img.shields.io/badge/License-MIT-yellow.svg) Security (https://img.shields.io/badge/Security-Audited-green) Crates.io (https://img.shields.io/crates/v/shimmy.svg) Downloads (https://img.shields.io/crates/d/shimmy.svg) Rust (https://img.shields.io/badge/rust-stable-brightgreen.svg) GitHub Stars (https://img.shields.io/github/stars/Michael-A-Kuykendall/shimmy?style=social)

💝 Sponsor this project (https://img.shields.io/badge/💝_Sponsor_this_project-ea4aaa?style=for-the-badge&logo=github&logoColor=white)

Shimmy will be free forever. No asterisks. No "free for now." No pivot to paid.

💝 Support Shimmy's Growth

🚀 If Shimmy helps you, consider sponsoring (https://github.com/sponsors/Michael-A-Kuykendall) — 100% of support goes to keeping it free forever.

  • $5/month: Coffee tier ☕ - Eternal gratitude + sponsor badge
  • $25/month: Bug prioritizer 🐛 - Priority support + name in SPONSORS.md
  • $100/month: Corporate backer 🏢 - Logo placement + monthly office hours
  • $500/month: Infrastructure partner 🚀 - Direct support + roadmap input

🎯 Become a Sponsor (https://github.com/sponsors/Michael-A-Kuykendall) | See our amazing sponsors 🙏


Drop-in OpenAI API Replacement for Local LLMs

Shimmy is a 4.8MB single-binary that provides 100% OpenAI-compatible endpoints for GGUF models. Point your existing AI tools to Shimmy and they just work — locally, privately, and free.

Developer Tools

Whether you're forking Shimmy or integrating it as a service, we provide complete documentation and integration templates.

Try it in 30 seconds

# 1) Install + run
cargo install shimmy --features huggingface
shimmy serve &

# 2) See models and pick one
shimmy list

# 3) Smoke test the OpenAI API
curl -s http://127.0.0.1:11435/v1/chat/completions \
  -H 'Content-Type: application/json' \
  -d '{
        "model":"REPLACE_WITH_MODEL_FROM_list",
        "messages":[{"role":"user","content":"Say hi in 5 words."}],
        "max_tokens":32
      }' | jq -r '.choices[0].message.content'

🚀 Compatible with OpenAI SDKs and Tools

No code changes needed - just change the API endpoint:

  • Any OpenAI client: Python, Node.js, curl, etc.
  • Development applications: Compatible with standard SDKs
  • VSCode Extensions: Point to http://localhost:11435
  • Cursor Editor: Built-in OpenAI compatibility
  • Continue.dev: Drop-in model provider

Use with OpenAI SDKs

  • Node.js (openai v4)
import OpenAI from "openai";

const openai = new OpenAI({
  baseURL: "http://127.0.0.1:11435/v1",
  apiKey: "sk-local", // placeholder, Shimmy ignores it
});

const resp = await openai.chat.completions.create({
  model: "REPLACE_WITH_MODEL",
  messages: [{ role: "user", content: "Say hi in 5 words." }],
  max_tokens: 32,
});

console.log(resp.choices[0].message?.content);
  • Python (openai>=1.0.0)
from openai import OpenAI

client = OpenAI(base_url="http://127.0.0.1:11435/v1", api_key="sk-local")

resp = client.chat.completions.create(
    model="REPLACE_WITH_MODEL",
    messages=[{"role": "user", "content": "Say hi in 5 words."}],
    max_tokens=32,
)

print(resp.choices[0].message.content)

⚡ Zero Configuration Required

  • Automatically finds models from Hugging Face cache, Ollama, local dirs
  • Auto-allocates ports to avoid conflicts
  • Auto-detects LoRA adapters for specialized models
  • Just works - no config files, no setup wizards

🧠 Advanced MOE (Mixture of Experts) Support

Run 70B+ models on consumer hardware with intelligent CPU/GPU hybrid processing:

  • 🔄 CPU MOE Offloading: Automatically distribute model layers across CPU and GPU
  • 🧮 Intelligent Layer Placement: Optimizes which layers run where for maximum performance
  • 💾 Memory Efficiency: Fit larger models in limited VRAM by using system RAM strategically
  • ⚡ Hybrid Acceleration: Get GPU speed where it matters most, CPU reliability everywhere else
  • 🎛️ Configurable: --cpu-moe and --n-cpu-moe flags for fine control
# Enable MOE CPU offloading during installation
cargo install shimmy --features moe

# Run with MOE hybrid processing
shimmy serve --cpu-moe --n-cpu-moe 8

# Automatically balances: GPU layers (fast) + CPU layers (memory-efficient)

Perfect for: Large models (70B+), limited VRAM systems, cost-effective inference

🎯 Perfect for Local Development

  • Privacy: Your code never leaves your machine
  • Cost: No API keys, no per-token billing
  • Speed: Local inference, sub-second responses
  • Reliability: No rate limits, no downtime

Quick Start (30 seconds)

Installation

🪟 Windows

# RECOMMENDED: Use pre-built binary (no build dependencies required)
curl -L https://github.com/Michael-A-Kuykendall/shimmy/releases/latest/download/shimmy.exe -o shimmy.exe

# OR: Install from source with MOE support
# First install build dependencies:
winget install LLVM.LLVM
# Then install shimmy with MOE:
cargo install shimmy --features moe

# For CUDA + MOE hybrid processing:
cargo install shimmy --features llama-cuda,moe

⚠️ Windows Notes:

  • Pre-built binary recommended to avoid build dependency issues
  • MSVC compatibility: Uses shimmy-llama-cpp-2 packages for better Windows support
  • If Windows Defender flags the binary, add an exclusion or use cargo install
  • For cargo install: Install LLVM (https://releases.llvm.org/download.html) first to resolve libclang.dll errors

🍎 macOS / 🐧 Linux

# Install from crates.io
cargo install shimmy --features huggingface

GPU Acceleration

Shimmy supports multiple GPU backends for accelerated inference:

🖥️ Available Backends

Backend Hardware Installation
CUDA NVIDIA GPUs cargo install shimmy --features llama-cuda
CUDA + MOE NVIDIA GPUs + CPU cargo install shimmy --features llama-cuda,moe
Vulkan Cross-platform GPUs cargo install shimmy --features llama-vulkan
OpenCL AMD/Intel/Others cargo install shimmy --features llama-opencl
MLX Apple Silicon cargo install shimmy --features mlx
MOE Hybrid Any GPU + CPU cargo install shimmy --features moe
All Features Everything cargo install shimmy --features gpu,moe

🔍 Check GPU Support

# Show detected GPU backends
shimmy gpu-info

⚡ Usage Notes

  • GPU backends are automatically detected at runtime
  • Falls back to CPU if GPU is unavailable
  • Multiple backends can be compiled in, best one selected automatically
  • Use --gpu-backend to force specific backend

Get Models

Shimmy auto-discovers models from:

  • Hugging Face cache: ~/.cache/huggingface/hub/
  • Ollama models: ~/.ollama/models/
  • Local directory: ./models/
  • Environment: SHIMMY_BASE_GGUF=path/to/model.gguf
# Download models that work out of the box
huggingface-cli download microsoft/Phi-3-mini-4k-instruct-gguf --local-dir ./models/
huggingface-cli download bartowski/Llama-3.2-1B-Instruct-GGUF --local-dir ./models/

Start Server

# Auto-allocates port to avoid conflicts
shimmy serve

# Or use manual port
shimmy serve --bind 127.0.0.1:11435

Point your development tools to the displayed port — VSCode Copilot, Cursor, Continue.dev all work instantly.

📦 Download & Install